Dynamic Load Balancing for Adaptive Scientific
Computations via Hypergraph Repartitioning

Umit V. Catalyurek Erik G. Bomari Karen D. Deviné

Doruk Bozdd Robert Heaphy
Lee Ann Fisk
fOhio State University *Sandia National Laboratories

Dept. of Biomedical Informatics Discrete Algorithms and Math. Dept.
Dept. of Electrical & Computer Eng. Albuquerque, NM 87185-1318, USA
Columbus, OH 43210, USA {egboman,kddeviyi@sandia.gov

{umit,bozdagd@bmi.osu.edu {rheaphy,lafisk@sandia.gov

Abstract

Adaptive scientific computations require that periodic repartitioning (load balancing) oc-
cur dynamically to maintain load balance. Hypergraph partitioning is a successful model for
minimizing communication volume in scientific computations, and partitioning software for
the static case is widely available. In this paper, we present a new hypergraph model for the
dynamic case, where we minimize the sum of communication in the application plus the mi-
gration cost to move data, thereby reducing total execution time. The new model can be solved
using hypergraph partitioning with fixed vertices. We describe an implementation of a parallel
multilevel partitioning algorithm within the Zoltan load-balancing toolkit, which to our knowl-
edge is the first code for dynamic load balancing based on hypergraph partitioning. Finally,
we present experimental results that demonstrate the effectiveness of our approach on a Linux
cluster with up to 64 processors. Our new algorithm compares favorably to the widely used
ParMETIS partitioning software in terms of quality.

1 Introduction

Dynamic load balancing is an important feature in parallel adaptive computations [4]. Even if the
original problem is well balanced, e.g., by using graph or hypergraph partitioning, the computation
may become unbalanced over time due to the dynamic changes. A classic example is simulation
based on adaptive mesh refinement, in which the computational mesh changes between time steps.

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. This
work was in part supported by the DOE’s Office of Science through the SciDAC program.

TSupported by Sandia contract PO283793 and US Department of Energy Contract ED-FC02-06ER25775.

The difference is often small, but over time, the cumulative change in the mesh becomes signifi-
cant. An application may therefore periodically re-balance, that is, move data among processors to
improve the load balance. This process is known as dynamic load balancing or repartitioning and is
a well studied problem [4, 30, 8, 5, 26, 29, 21, 23, 24]. It has multiple objectives with complicated
trade-offs among them:

1. good load balance in the new data distribution;
2. low communication cost within the application (as given by the new distribution);
3. low data migration cost to move data from the old to the new distribution; and

4. short repartitioning time.

Much of the early work in load balancing focused on diffusive methods [4, 14, 29, 22], where
overloaded processors give work to neighboring processors that have lower than average loads.
A quite different approach is to partition the new problem “from scratch” without accounting for
existing partition assignments, and then try to remap partitions to minimize the migration cost
[24]. These two strategies have very different properties. Diffusive schemes are fast and have low
migration cost, but may incur high communication volume. Scratch-remap schemes give low com-
munication volume but are slower and often have high migration cost. Therefore, several dynamic
load-balancing schemes have been designed that compromise between these extreme choices [23].

Our approach is to directly minimize the total execution time. We use the model

ttot == a(tcomp + tcomm) + tmig;

wheret..,, andt..., denote computation and communication times within the application, re-
spectively, and,,,;, is the data migration time. The parameteirindicates how many iterations

(e.g., time steps in a simulation) the application performs between every load-balance operation.
Since the goal of load balancing is to minimize the communication cost while maintaining well-
balanced computational loads, we can safely assume that computation will be balanced and hence
dropt..m, term. Thus, the objective of this common model [23, 19] is to MiNINIZE, .., + tig -

The distinct feature of our work is that we attempt to minimize the true objective directly instead of
using heuristics. Our approach works both with graph and hypergraph models and partitioning. We
focus on the hypergraph model and present a single hypergraph model that models both the com-
munication cost and the migration cost. There are three significant advantages of our approach:
1) hypergraphs accurately model the actual communication cost and have greater applicability
than graph models (e.g., hypergraph can represent non-symmetric and/or non-square systems) [2];
2) the natural combined representation of the two costs in a single hypergraph is much more suit-
able to successful multilevel partitioning techniques as described in Section 3; and 3) our approach
requires only small modifications to existing partitioning software. To our knowledge, we are the
first to implement a repartitioning method based on hypergraph partitioning.

2 Preliminaries

The static partitioning problem is often modeled as graph or hypergraph partitioning, where ver-
tices represent the computational load associated with data and the edges (hyperedges) represent

2

data dependencies. The edges (hyperedges) that span more than one partition (so-called cut edges)
incur communication cost. We use the hypergraph model because it more accurately reflects com-
munication volume and cost and has greater applicability than graph models [2, 11].

2.1 Hypergraph Partitioning

A hypergraphH = (V, N) is defined by a set of verticels and a set of nets (hyperedgeX)
among those vertices, where each nete N is a non-empty subset of vertices. Weights X
and costs ¢;) can be assigned to the vertices € V') and nets(n; € N) of the hypergraph,
respectively.P = {V;,V4,...,V,} is called ask-way partition of H if each part is a non-empty,
pairwise-disjoint subset df and the union of alV,,,p = 1,2,... &, is equal tol. A partition is
said to bebalancedif

W, < Way(1+€)forp=1,2,... k, 1)

where part weightV,, = -, <y, w; is the sum of the vertex weights of parf,

Wang = (Zwev wi> /k is the weight of each part under perfect load balance,caisth predeter-
mined maximum imbalance allowed.

In a partition, a net that has at least one vertex in a part is said to connect to that part. The
connectivity);(H, P) of a netn; denotes the number of parts connectedbyor a given partition
P of H. A netn; is said to becutif it connects more than one part (i.e\; > 1).

There are various ways of defining the cut-sizés(H, P) of a partition P of hypergraph
H [20]. The relevant one for our context is known as connectivity-1Kek) cut, defined as
follows:

cuts(H,P) = Y ¢;(A\;j—1) 2)
njEN
The hypergraph partitioning problem [20] can then be defined as the task of dividing a hy-
pergraph intok parts such that the cut-size (2) is minimized while the balance criterion (1) is
maintained.

2.2 Multilevel Partitioning

Although graph and hypergraph partitioning are NP-hard [10, 20], algorithms based on multilevel
paradigms [1, 13, 17] have been shown to quickly compute good partitions in practice for both
graphs [12, 16, 28] and hypergraphs [3, 18]. Recently the multilevel partitioning paradigm has
been adopted by parallel graph [28, 19], and hypergraph [6, 25] partitioners.

In multilevel partitioning, instead of directly partitioning the original large hypergraph (graph),
a hierarchy of smaller hypergraphs (graphs) that approximate the original is generated during the
coarseningphase. The smallest hypergraph (graph) is partitioned indhese partitioningphase.
In therefinemenphase, the coarse partition is projected back to the larger hypergraphs (graphs) in
the hierarchy and improved using a local optimization method.

Figure 1: (left) A sample hypergraph for epogh- 1, (right) repartitioning hypergraph for epoch
j with a sample partitioning.

3 A New Model for Hypergraph-based Repartitioning

Dynamic load balancing (repartitioning) is difficult because there are multiple objectives that often
conflict. Thus, some algorithms focus on minimizing communication cost while others focus on
migration cost. We propose a novel unified model that combines both communication cost and
migration cost. We then minimize the composite objective directly using hypergraph partitioning.

First consider the computational structure of an adaptive application in more detail. A typi-
cal adaptive application, e.g., time-stepping numerical methods with adaptive meshes, performs
a sequence of iterations. Between each iteration the structure of the problem (computation) may
change slightly, but usually not much. After a certain number of iterations, a load balancer is called
to rebalance the workloads. The required data is then moved (migrated) between parts to establish
the new partitioning, and the computation continues. We call the period between two subsequent
load balancings aapochof the application. A single epoch may consist of one or more iterations
of the computation in the application. Let the number of iterations in epdofic; .

Itis possible to model the computational structure and dependencies of each epoch using a com-
putational hypergraph [2]. Since each epoch contains computations of the same type, but the struc-
ture may change, a different hypergraph is needed to represent each epofM.dl/7, E7) be
the hypergraph that models thi¢h epoch of the application.

We assume the following procedure. Load balancing of the first epoch is achieved by parti-
tioning the first epoch hypergrapti' using a static partitioner. At the end of epoch 1, we need to
decide how to redistribute the data and computation for epoch 2. The cost should be the sum of
the communication cost fok?, with the new data distribution, scaled by (since epoch 2 will
have o, iterations) plus the migration cost for moving data between the two distributions. This
principle holds forH’ at every epocly, j > 1. To achieve this we propose a negpartitioning
hypergraph model

Repartitioning hypergraph/’ for epochj is constructed by augmenting epogh hypergraph
H7 with k& new vertices andV/| new hyperedges to model the migration cost. A we keep
the vertex weights intact, but we scale each net’s cost (representing communication) dye
add one nevpatrtition vertexu;, with zero weight, for each partition, i = 1,2, ..., k. Thus, the
vertices inH7 are V7 U {u,|i = 1,2,...,k}. For each vertex € V7, we add amigration net
betweenv and u; if v is assigned to partitiom at the beginning of epoch. This migration net
represents the data that needs to be migrated for moving vettea different partition; therefore,
its cost is set to the size of the data associated with

Figure 1 illustrates a sample hypergraph—! for epochj — 1, and a repartitioning hyper-
graph for epochy. Our model does not require distinguishing between the two types of vertices
and nets; however, for clarity in this figure, we represent computation vertices with circles and
partition verticesu; with hexagons. Similarly, nets modeling communication during computation
are represented with squares, and migration nets modeling data that must be migrated if a vertex
assignment changes are represented with diamonds. At gpechthere are nine vertices with,
say, unit weights partitioned into three parts with a perfect load balance. There are three cut nets
representing data that need to be communicated between three parts. Assuming the cost of each
net is one, the total communication volume (2) is four, since two of the nets has connectivity of
two and one has three. In other words, each iteration of epdaolsurs a communication cost of
four.

In epoch; of Figure 1 (right), the computational structure is changed: vertices 3 and 5 are
removed, and new verticesand b are added. The repartitioning hypergrafph shown reflects
these changes. Additionally, there are three partition vertices, andus. The seven old vertices
of H’~! are connected, via migration nets, to the partition vertices for the partitions to which they
were assigned in epoch— 1.

We now have a new repartitioning hypergragh that encodes both communication cost and
migration cost. By using this novel repartitioning hypergraph with an crucial constraint — vertex
u; must be assigned, or fixed, to partition— the repartitioning problem reduces to hypergraph
partitioning withfixedvertices. In Section 4, we describe how partitioning with fixed vertices can
be achieved in a parallel multilevel hypergraph partitioning framework.

Let P = {Vi,V5,...,Vi} be a valid partitioning for this problem. We decode the result as
follows. If a vertexv is assigned to partitiofy,, in epochj — 1 and to partition, in epochj,
wherep # ¢, then the migration net betweenand, is cut (sincey, is fixed in'V,;) modeling the
migration cost of vertex’s data. The interpretation of cut nets representing communication during
computation is similar: the cuts (2) represent communication volume during computation. Hence
our repartitioning hypergraph accurately models the sum of communication during computation
phase plus migration cost due to moved data.

In Figure 1, assume that the example epgdhas, say, five iterations, i.ey; = 5. Then the
cost of each communication net is five. Further assume that each vertex has size three; i.e., the
migration cost of each vertex, and, hence the cost of each migration net, is three. In this example,
vertices 2 and 8 are moved to partitiohs and V5, respectively. The migration nets connecting
them to their previous parts are now cut with connectivity two. The total migration cost is then
2 x 3 x (2—1) = 6. In this partitioning, two communication net§l(, 2, a} and {7,8}) are also
cut with connectivity two, representing a total communication volume gf5 x (2 — 1) = 10.

Thus, the total cost of epochis 16.

4 Parallel Multilevel Hypergraph Partitioning with Fixed Ver-
tices
Another contribution of our work is the development of a new technique for parallel hypergraph

partitioning with fixed vertices. As described in Section 2, hypergraph partitioning is NP-hard
but can be effectively (approximately) solved in practice using multilevel heuristic approaches.

Multilevel hypergraph partitioning algorithms can be adapted to handle fixed vertices [3]. Here
we describe our technique for parallel multilevel hypergraph partitioning with fixed vertices. Our
implementation is based on the parallel hypergraph partitioner in Zoltan [6].

The main idea of partitioning with fixed vertices is to make sure that the fixed partition con-
straint of each vertex is maintained during phases of multilevel partitioning. We will first describe
how this works assuming that we are using a direavay multilevel paradigm. Later we will
briefly discuss how this is handled when a recursive bisection approach is used.

4.1 Coarsening Phase

The goal of the coarsening phase is to approximate the original hypergraph via a succession of
smaller hypergraphs. This process terminates when the coarse hypergraph is small enough (e.g., it
has less thark vertices) or when the last coarsening step fails to reduce the hypergraph size by
a threshold (typically 10%). In this work we employ a method based on mesimitar pairs of
vertices. We adopted a method callader-product matchinglPM), that was initially developed

in PaToH [2] (where it was called heavy-connectivity matching), and later adopted by hMETIS [15]
and Mondriaan [27]. The greedy first-choice method is used to match pairs of vertices.

Conceptually, the parallel implementation of IPM works in rounds where in each round, each
processor selects a subset of vertices as candidate vertices that will be matched in that round.
The candidate vertices are sent to all processors. Then all processors concurrently contribute the
computation of theibestmatch for those candidates. Matching is finalized by selecting a global
best match for each candidate. Zoltan uses a two-dimensional data distribution; hence, the actual
inner workings of IPM are somewhat complicated. Since a detailed description is not needed to
explain the extension for handling fixed vertices, we have omitted those details. Readers may refer
to [6] for more details.

During the coarsening, we do not allow two vertices to match if they are fixed to different
partitions. Thus, there are three possible scenarios: 1) two matched vertices are fixed to the same
partition, 2) only one of the matched vertices is fixed to a partition, or 3) both are not fixed to
any partitions (free vertices). For cases 1 and 2, the resulting coarse vertex is fixed to the part in
which either of its constituent vertices was fixed; for case 3, the resulting coarse vertex is free. By
constraining matching in this way, we ensure that the fixed vertex information appropriately prop-
agates to coarser hypergraphs, and coarser hypergraphs truly approximate the finer hypergraphs
and their constraints.

In order to efficiently implement this restriction, we allow each processor to concurrently com-
pute all match scores of possible matches, including infeasible ones (due to the matching con-
straint), but at the end when the best local match for each candidate is selected we select a match
that obeys the matching constraint. We have observed that this scheme only adds an insignificant
overhead to the unrestricted IPM matching.

4.2 Coarse Partitioning Phase

The goal of this phase is to construct an initial solution using the coarsest hypergraph available.
When coarsening stops, if the coarsest hypergraph is small enough (i.e., if coarsening did not ter-
minate early due to unsuccessful coarsening) we replicate it on every processor and each processor

Name V] |E| Application Area
xyce680s| 682,712 | 823,232 | VLSI design
2DLipid 4,368 2,793,988 | Polymer DFT
auto 448,695 | 3,314,611 | Structural analysis (carn)
apoal-10| 92,224 | 17,100,850 Molecular dynamics
cageld4 | 1,505,785 27,130,349 DNA electrophoresis

Table 1: Properties of the test datasets.

runs a randomized greedy hypergraph growing algorithm to compute a different partitioning into
k partitions. If the coarsest hypergraph is not small enough, then each processor contributes com-
putation of an initial partitioning using a localized version of the greedy hypergraph algorithm. In
either case, we ensure that fixed coarse vertices are assigned to their respective partitions.

4.3 Refinement Phase

The refinement phase takes a partition assignment, projects it to finer hypergraphs and improves
it using a local optimization method. Our code is based on a localized version of the successful
Fiduccia—Mattheyses [9] method, as described in [6]. The algorithm performs multiple pass-pairs
and in each pass, each vertex is considered to move to another part to reduce cut cost. As in coarse
partitioning, the modification to handle fixed vertices is quite straight-forward. We do not allow
fixed vertices to be moved out of their fixed partition.

4.4 Handling Fixed Vertices in Recursive Bisection

Achieving k-way partitioning via recursive bisection (repeated subdivision of parts into two parts)
can be extended easily to accommodate fixed vertices. For example, in the first bisection of re-
cursive bisection, the fixed vertex information of each vertex can be updated as follows: vertices
that are originally fixed to partitions < p < k/2, are fixed to partition 1, and vertices originally
fixed to partitionsk/2 < p < k are fixed to partition 2. The partitioning algorithm with fixed
vertices then can be executed without any modifications. This scheme is recursively applied in
each bisection. Zoltan uses this recursive bisection approach.

5 Results

Our repartitioning code is based on the hypergraph partitioner in the Zoltan toolkit [7, 6], which
is freely available from the Zoltan web siteThe code is written in C and uses MPI for com-
munication. We ran our tests on a Linux cluster that has 64 dual-processor Opteron 250 nodes
interconnected via Infiniband network.

Due to the difficulty of obtaining data from real-world simulations, we present results from
synthetic dynamic data. The base cases were obtained from real applications, as shown in Table 1.

lwww.cs.sandia.gov/Zoltan

We used two different methods to generate synthetic data. The first method represents biased
random perturbations that change the data’s structure. In this method, we randomly select a certain
fraction of vertices in the original data and delete them along with the incident edges. At each
iteration, we delete a different subset of vertices from the original data. Therefore, we simulate
dynamically changing data that can both lose and gain vertices and edges. The results presented in
this section correspond to the case where half of the partitions lose or gain 25% of the total number
of vertices at each iteration.

The second method we used to generate synthetic data simulates adaptive mesh refinement.
Starting with the initial data, we randomly select a certain fraction of the partitions at each iteration.
Then, the sub-domain corresponding to selected partitions performs a simulated mesh refinement,
where each vertex increases both its weight and its size by a constant factor. In the results displayed
in this section, 10% of the partitions are selected at each iteration and the weight and size of each
vertex in these partitions are randomly increased to between 1.5 and 7.5 of their original value.

We tested several other configurations by varying the fraction of vertices lost or gained and the
factor that scales the size and weight of vertices. The results we obtained in these experiments
were similar to the ones presented in this section.

We compare four different algorithms:

1. Zoltan-repart: Our new method implemented within the Zoltan hypergraph partitioner,
2. Zoltan-scratch: Zoltan hypergraph partitioning from scratch.

3. ParMETIS-repart: ParMETIS graph repartitioning usingAllaptiveReparoption.

4. ParMETIS-scratch: ParMETIS graph partitioning from scraRartkway).

We used ParMETIS version 3.1 in these experiments. For the scratch methods, we used a maximal
matching heuristic in Zoltan to map partition numbers to reduce migration cost. We do not expect
the partition-from-scratch methods to be competitive for dynamic problems, but include them as a
useful baseline.

In Figures 2 through 6, experimental results for total cost while varying the number of pro-
cessors andv are presented. In our experiments we varied the number of processors (partitions)
between 16 and 64, arndfrom 1 to 1000. (Our corresponds to the ITR parameter in ParMETIS.)

We report the average results over a sequence of 20 trials for each experiment. For each configura-
tion, there are four bars representing total cost for Zoltan-repart, ParMETIS-repart, Zoltan-scratch
and ParMETIS-scratch, from left to right respectively. Total cost in each bar is normalized by

« and consists of two components: communication (bottom) and migration (top) costs. In or-
der to improve the readability of the charts, we limited the y-axisdo= 1 where total costs

for Zoltan-scratch and ParMETIS-scratch were much larger than the costs for Zoltan-repart and
ParMETIS-repart.

The results show that in the majority of the test cases, our new hypergraph repartitioning
method Zoltan-repart outperforms ParMETIS-repart in terms of minimizing the total cost. Since
minimizing the migration cost is a more deeply integrated objective starting from coarsening,
Zoltan-repart trades off communication cost better than ParMETIS-repart to minimize the total
cost. This is more clearly seen for smallvalues where minimizing migration cost is as important
as minimizing the communication cost. As grows, migration cost decreases relative to com-
munication cost and the problem essentially reduces to minimizing the communication cost alone.

8

Due to increased emphasis on communication volume, the partitioners find smaller communication
cost with increasingy.

Similar observations can be made when comparing Zoltan-repart against Zoltan-scratch and
ParMETIS-scratch. Since the sole objective in Zoltan-scratch and ParMETIS-scratch is to mini-
mize communication cost, the migration cost is extremely large, especially for amale total
cost using Zoltan-scratch and ParMETIS-scratch is comparable to Zoltan-repart onlyawiken
greater than 100. For larger valuescofthe objective of minimizing the communication cost dom-
inates; however, Zoltan-repart still performs as well as the scratch methods to minimize the total
cost.

When using ParMETIS-repart, migration cost increases noticeably compared to communica-
tion cost with increasing number of partitions (processors). On the other hand, with Zoltan-repart,
the increase in migration cost is kept small at the expense of a modest increase in communication
cost. Consequently, Zoltan-repart achieves a better balance between communication and migration
costs, hence the total cost gets relatively better compared to ParMETIS-repart as the number of par-
titions increases. This shows that Zoltan-repart is superior in minimizing the total cost objective as
well as in scalability of the solution quality compared to ParMETIS-repart.

Run times of the tested partitioners while changing the data’s structure are given in Figures 7—
9. Results for changing vertex weights and sizes are omitted here due to lack of space. Those
results were similar to the ones presented here. As shown in the figures, Zoltan-repart is as fast as
ParMETIS-repart on smaller datasets such as xyce680s. However, it is significantly slower for the
largest datasets. We plan to improve this performance by using local heuristics in Zoltan-repart,
reducing global communication (e.g., using local IPM instead of global IPM).

6 Conclusions

We have presented a new approach to dynamic load balancing based on a single hypergraph model
that incorporates both communication volume in the application and data migration cost. Our
experiments, using data from a wide range of application areas, show that our method produces
partitions that give similar or lower cost than the adaptive repartitioning scheme in ParMETIS. Our
code generally required longer time than ParMETIS but that is mostly due to the greater richness
of the hypergraph model. The full benefit of hypergraph partitioning is realized on unsymmetric
and non-square problems that cannot be represented easily with graph models. To provide com-
parisions with graph repartitioners, we did not test such problems here, but they have been studied
elsewhere [2, 6]. The experiments showed that our implementation is scalable.

Our approach uses a single user-defined parametetrade between communication cost and
migration cost. Experiments show that our method works particularly well when migration cost is
more important, but without compromising quality when communication cost is more important.
Therefore, we recommend our algorithm as a universal method for dynamic load balancing. The
best choice otx will depend on the application, and can be estimated. Reasonable values are in
the rangel — 1000.

In future work, we will to test our algorithm and implementation on real adaptive applications.
We will also attempt to speed up our algorithm by exploiting locality given by the data distribution.
We believe the implementation can be made to run faster without reducing quality. However, since
the application run time is often far greater than the partitioning time, this enhancement may not
be important in practice.

- Zoltan-repart migration

- Zoltan-repart communication
[PartETIS-repart migration

- PamAET S-repart communication
- Zoltan-scratch migration

- Zoltan-scratch communication
[ParvETIS-scratch migration
- PamAET|S-scratch communication

x10 x10
6 4
3.5
- 5 [-
g g s
3 o
® 45 =
° 5%°
e T
N3t N2
© ©
£ E1s
z2r =
1
1
0.5
1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
16 partitions 32 partitions 64 partitions 16 partitions 32 partitions 64 partitions

Figure 2: Normalized total cost (communication volume + (migration volumeldr xyce680s
with (a) perturbed data structure (b) perturbed weights.

Normalized total cost
Normalized total cost

0.5

0 0
1 10 1001000 1 10 1001000 1 10 100 1000 1 10 1001000 1 10 1001000 1 10 100 1000
16 partitions 32 partitions 64 partitions 16 partitions 32 partitions 64 partitions

Figure 3: Normalized total cost (communication volume + (migration volumehr 2DLipid
with (a) perturbed data structure (b) perturbed weights.

10

Normalized total cost
o
Normalized total cost
n w
N ol wW ol

-
o

-

0.5

e
2

0
1 10 1001000 1 10 1001000 1 10 100 1000 1 10 1001000 1 10 1001000 1 10 100 1000
16 partitions 32 partitions 64 partitions 16 partitions 32 partitions 64 partitions

Figure 4: Normalized total cost (communication volume + (migration volumelgr auto dataset
with (a) perturbed data structure (b) perturbed weights.

~
~

[=2]
[

95 35
o [+]
o o
[} [}
g4 g4
el e
8 8
53 =3
£ E
o [+]
=2 =2

1 1

0 0
1 10 1001000 1 10 1001000 1 10 100 1000 1 10 1001000 1 10 1001000 1 10 100 1000
16 partitions 32 partitions 64 partitions 16 partitions 32 partitions 64 partitions

Figure 5: Normalized total cost (communication volume + (migration volumefér apoal-10
with (a) perturbed data structure (b) perturbed weights.

11

Normalized total cost
N
Normalized total cost

0
1 10 1001000 1 10 1001000 1 10 100 1000 1 10 1001000 1 10 1001000 1 10 100 1000
16 partitions 32 partitions 64 partitions 16 partitions 32 partitions 64 partitions

Figure 6: Normalized total cost (communication volume + (migration volumegr cage14 with
(a) perturbed data structure (b) perturbed weights.

-
o

Run time (sec)
[odd

6
[Zc'tan-repart 4
Il FartETIS repart 2
- Zoltan-scratch 0
[ParvETiS-scratch 110 1001000 1 10 1001000 1 10 1001000

16 partitions 32 partitions 64 partitions

Figure 7: Run time with perturbed data structure for xyce680s.

12

Run time (sec)

sl
12

4t
H H
230 a
o [
E £
z? «

0
1 10 1001000 1 10 1001000 1 10 1001000 1

10 1001000 1 10 1001000 1 10 1001000
16 partitions 32 partitions 64 partitions

16 partitions 32 partitions 64 partitions

Figure 8: Run time with perturbed data structure for (a) 2DLipid (b) auto.

60
35
50
30
25 ,‘.;40
[
L
20 .E 30
15 g
€ 20
10
10
5
0
1 10 1001000 1 10 1001000 1 10 100 1000 1 10 1001000 1 10 1001000 1 10 100 1000
16 partitions 32 partitions 64 partitions 16 partitions 32 partitions 64 partitions

Figure 9: Run time with perturbed data structure for (a) apoal-10 (b) cagel4.

13

Acknowledgments

We thank Vitus Leung for his work on the Zoltan project.

References

[1] T. N. Bui and C. Jones. A heuristic for reducing fill-in sparse matrix factorizatiofrérc. 6th SIAM
Conf. Parallel Processing for Scientific Computipgges 445-452. SIAM, 1993.

[2] U. V. Catalyirek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel sparse-
matrix vector multiplicationlEEE Transactions on Parallel and Distributed Systeft¥7):673—-693,
1999.

[3] U. V. Catalyiirek and C. Aykanat.PaToH: A Multilevel Hypergraph Partitioning Tool, Version 3.0
Bilkent University, Department of Computer Engineering, Ankara, 06533 Turkey. PaToH is available
at http://bmi.osu.edu$ umit/software.htm, 1999.

[4] G. Cybenko. Dynamic load balancing for distributed memory multiprocessahr®arallel Distrib.
Comput, 7:279-301, 1989.

[5] H. deCougny, K. Devine, J. Flaherty, R. Loy, C. Ozturan, and M. Shephard. Load balancing for the
parallel adaptive solution of partial differential equatioAppl. Numer. Math.16:157-182, 1994.

[6] K.Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek. Parallel hypergraph partitioning for
scientific computing. IrProc. of 20th International Parallel and Distributed Processing Symposium
(IPDPS’06) IEEE, 2006.

[7] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan. Zoltan data management services
for parallel dynamic application€€omputing in Science and Engineerjdg2):90-97, 2002.

[8] P.Diniz, S. Plimpton, B. Hendrickson, and R. Leland. Parallel algorithms for dynamically partitioning
unstructured grids. IRroc. 7th SIAM Conf. Parallel Processing for Scientific Computpapges 615—
620. SIAM, 1995.

[9] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. In
Proc. 19th IEEE Design Automation Corfages 175-181, 1982.

[10] M. R. Garey and D. S. JohnsonComputers and Instractability: A Guide to the Theory of NP-—
CompletenessWV.H Freeman, San Francisco, CA, 1979.

[11] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel compuBagallel Comput-
ing, 26:1519-1534, 2000.

[12] B. Hendrickson and R. LelandThe Chaco user’s guide, version 2.8andia National Laboratories,
Alburquerque, NM, 87185, 1995.

[13] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graph2rsc. Supercomput-
ing '95. ACM, December 1995.

[14] Y.F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic load balancing.
Concurrency: Practice and ExperiencE):467 — 483, 1998.

14

[15] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning: application
in VLSI domain. InProc. 34th Design Automation Conjfiages 526 — 529. ACM, 1997.

[16] G. Karypis and V. Kumar.MeTiS A Software Package for Partitioning Unstructured Graphs, Parti-
tioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices VersiolAigersity
of Minnesota, Department of Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[17] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing0(1), 1999.

[18] G. Karypis, V. Kumar, R. Aggarwal, and S. Shekhd&MeTiS A Hypergraph Partitioning Package
Version 1.0.1 University of Minnesota, Department of Comp. Sci. and Eng., Army HPC Research
Center, Minneapolis, 1998.

[19] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning and sparse matrix
ordering library, version 3.1. Technical report, Dept. Computer Science, University of Minnesota,
2003. http://www-users.cs.umn.edu/ karypis/metis/parmetis/download.html.

[20] T. Lengauer.Combinatorial Algorithms for Integrated Circuit Layouwilley—Teubner, Chichester,
U.K., 1990.

[21] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured medhResallel
Distrib. Comput, 51(2):150-177, 1998.

[22] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion algorithms for repartitioning of adaptive
meshesJ. Parallel Distrib. Comput.47(2):109-124, 1997.

[23] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing adaptive scientific
simulations. InProc. Supercomputinddallas, 2000.

[24] K. Schloegel, G. Karypis, and V. Kumar. Wavefront diffusion and LMSR: Algorithms for dynamic
repartitioning of adaptive meshd&EE Trans. Parallel Distrib. Syst12(5):451-466, 2001.

[25] A. Trifunovic and W. J. Knottenbelt. Parkway 2.0: A parallel multilevel hypergraph partitioning tool.
In Proc. 19th International Symposium on Computer and Information Sciences (ISCIS ail0f)e
3280 ofLNCS pages 789-800. Springer, 2004.

[26] R. Van Driessche and D. Roose. Dynamic load balancing with a spectral bisection algorithm for the
constrained graph partitioning problem. High-Performance Computing and Networkjimgumber
919 in Lecture Notes in Computer Science, pages 392-397. Springer, 1995. Proc. Int'l Conf. and
Exhibition, Milan, Italy, May 1995.

[27] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for parallel sparse
matrix-vector multiplication SIAM Review47(1):67-95, 2005.

[28] C. Walshaw. The Parallel JOSTLE Library User's Guide, Version 3.Q@niversity of Greenwich,
London, UK, 2002.

[29] C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph-partitioning for adaptive unstructured
meshesJ. Par. Dist. Comput.47(2):102—-108, 1997.

[30] R. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calculations.
Concurrency 3:457-481, October 1991.

15

